If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4m^2-12m+1=0
a = 4; b = -12; c = +1;
Δ = b2-4ac
Δ = -122-4·4·1
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8\sqrt{2}}{2*4}=\frac{12-8\sqrt{2}}{8} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8\sqrt{2}}{2*4}=\frac{12+8\sqrt{2}}{8} $
| 2x-1/3-3x-1/4=-1 | | 16/18=24/x | | 4(d–4)-2=-3(d-1) | | 4+2+p=10 | | 15/3=y/4 | | 11-35x=180 | | 2p^2*5p=21485.91732 | | (5/10)=(25/x) | | 4x(6x-10)=9x(4x+8) | | 5x+17=-3x+41 | | -7x-4=4x+18 | | 5(2c)=100 | | 14=n–3 | | 3x+9=12+6 | | ⅓(x+12)=11 | | −3=5−d/2 | | (x+6)+10=1 | | 3–10=2y | | F(x)=36+3x | | 12x-10=-10 | | 2s/2=3 | | 5a+9-2=a+3+2a | | 8+4x=5x-7 | | –7x−5=–19 | | y=36-36+5 | | y-3.2=5.5 | | 12x+210x=90 | | (x-5)(2x-4)=0ç | | x=7x+165 | | 1x(3+x)=9 | | –3r=–5−2r | | x+59+45+85=180 |